

ARSET

Applied Remote Sensing Training http://arset.gsfc.nasa.gov

Creating and Using Normalized
Difference Vegetation Index (NDVI) from
Satellite Imagery

Instructors: Cindy Schmidt and Amber McCullum

Week 1

Course Structure

- One lecture per week every Wednesday from February 10 to March 2 at 12:00-1:00pm EST (-05:00 UTC)
 - Lectures
 - In-class exercise
 - Q&A
 - Homework exercises
- Webinar recordings, PowerPoint presentations, in-class exercises, and homework assignments can be found after each session at:
 - http://arset.gsfc.nasa.gov/ecoforecasting/webinars/advanced-webinar-creating-and-usingnormalized-difference-vegetation-index
- Q&A: Following each lecture and/or by email (<u>cynthia.l.schmidt@nasa.gov</u>) or (<u>amberjean.mccullum@nasa.gov</u>)

Homework and Certificates

- Homework
 - Hands-on exercise each week
 - Answers must be submitted via Google Form
- Certificate of Completion:
 - Attend all 4 webinars
 - Complete all 4 homework assignments by the deadline (access from ARSET website above)
 - Week 1 Deadline: Wednesday February 24th
 - You will receive certificates approximately 2 months after the completion of the course from: marines.martins@ssaihq.com

Prerequisites

- Fundamentals of Remote Sensing
 - Sessions 1 and 2A (Land)
 - On-demand webinar available anytime
 - http://arset.gsfc.nasa.gov/webinars/ fundamentals-remote-sensing
- Download and Install QGIS
 - Install instructions on ARSET website:
 http://arset.gsfc.nasa.gov/sites/default/files/ecoforecasting/webinars/Advanced_NDVI/
 Downloading%20and%20Installing%20QGIS_Final.pdf
 - No previous QGIS knowledge needed, but useful to have some geospatial experience

On-Demand Training on Fundamentals of Remote Sensing

These on-demand sessions are intended to provide a basic overview of remote sensing. They are recommended as prerequisites for future courses in land management, wildfires, and water resources.

Session 1 is a general overview applicable to all the application areas mentioned above. There are two different Session 2 recordings specific to A) land management and wildfires and B) water resources. This training can be freely accessed at any time with a short user registration. Users can also download pdf versions of the presentations using the links below. No certificates will be provided for this training.

We hope you enjoy this on-demand training opportunity!

Presentation	Recording
Session1:Fundamentals of Remote Sensing	External Link to Session 1 Recording
Session 2A: Satellites, Sensors, Data, and Tools for Land Mgmt and Wildfire Applications	External Link to Session 2A Land Recording
Session 2B: Satellites, Sensors, Data, and Tools for Water Resource Applications (Coming soon)	External Link to Session 2B Water Recording (Coming soon)

Accessing Course Materials

 http://arset.gsfc.nasa.gov/ecoforecasting/webinars/advanced-webinar-creating-and-using-normalizeddifference-vegetation-index

Course
materials are
provided here
using each
specified link
and will be
active after
each week

Course Objectives

- Provide understanding of the Normalized Difference Vegetation Index (NDVI)
- Show participants how to acquire Landsat and MODIS imagery
- Provide step-by-step training on how to generate:
 - NDVI images from Landsat and MODIS
 - NDVI time series using MODIS
 - MODIS NDVI anomaly maps
- Conduct live demonstrations of useful NDVI websites
- Provide in-class and homework exercises

Image Credit: Global Agricultural Monitoring Program.

Course Outline

Week 1

Overview of NDVI and QGIS

Week 2

NDVI with Landsat

Week 3

MODIS NDVI Time Series

Normalized Difference Vegetation Index (NDVI)

0.7

- 0.1

Week 4

MODIS NDVI Anomaly Mapping

Week 1 Agenda

- Review of NDVI
- NDVI applications and examples
- Overview of QGIS
- In-class exercise: Introduction to QGIS and downloading Landsat imagery
- Q&A

QGIS User interface

USGS Earth Explorer

What is NDVI?

- Normalized Difference Vegetation Index
 - Based on the relationship between red and nearinfrared wavelengths
 - Chlorophyll strongly absorbs visible (red)
 - Plant structure strongly reflects near-infrared

Red Near-Infrared

What is NDVI?

NDVI formula:

Near-Infrared - Red

Near-Infrared + Red

- Values range from -1.0 to 1.0
 - Negative values to 0 mean no green leaves
 - Values close to 1 indicates the highest possible density of green leaves.

Image Credit: Robert Simmon

NDVI Applications

- Vegetation health
 - Crop health
- Phenology
- Drought Indicator
 - Soil moisture
- Leaf Area Index (LAI)
- Carbon Monitoring

South Africa's crop conditions at the end of March are summarized in the NDVI-MODIS anomaly, which indicates belowaverage crop conditions in both North West and western Free State provinces and above-average crop conditions in Mpumalanga province.

NDVI Example

- This is Landsat NDVI image of the Panama Canal watershed
- The darker green the area, the higher the NDVI value, the more green vegetation is present
- This image was acquired in March 2000 during Panama's annual dry season.

Source: http://earthobservatory.nasa.gov

NDVI: Phenology

- Remote sensing is used to track the seasonal changes in vegetation
- Monthly NDVI images from MODIS or Landsat can be used to monitor phenology

North America NDVI images in winter and summer Credit: spacegrant.montana.edu

NDVI Anomalies

- Departure of NDVI from the long-term average, normalized by long-term variability
- Generated by subtracting the long-term mean from the current value for that month of the year for each grid cell.
- Indicates if vegetation greenness at a particular location is typical for that period or if the vegetation is more or less green

NDVI Anomalies in the southwestern United States. Image Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio.

NDVI Anomaly Example

- California's Drought
- Image shows the NDVI anomalies from January 17th to February 1st 2014 against average conditions over the same period from the past decade
- Notice the below-average vegetation along most of the Central Valley farmland.
- Vegetation in the Sierra Nevada is greener then usual, this is mainly because of a lack of snow, which is also bad news for California.

Image Credit: NASA Earth Observatory

QGIS

- Freely-available open source Geographic Information System (GIS) licensed under the GNU General Public License
- Volunteer-driven project
- Runs on Windows and Mac operating systems
- Plugins allow users to perform advanced geospatial analysis
- Compatible with many data formats including:
 - Shapefiles
 - Geotiff
 - Geodatabases, etc.

QGIS: Support

- User Guide and Training Manual available
 - http://www.ggis.org/en/site/forusers/index.html
- User support on StackExchange
 - Use QGIS Tag
 - http://gis.stackexchange.com/
- Case Studies
 - Example: Using the processing toolbox to automate snow classification
 - Similar to NDVI classification
 - http://www.qgis.org/en/site/about/case_studies/ australia_snowyhydro.html

Case study: use of QGIS for calculating the Normalized Difference Snow Index (NDSI). Image Credit: Andrew Jeffrey.

Contacts

- ARSET Land Management and Wildfire Contacts
 - Cynthia Schmidt: Cynthia.L.Schmidt@nasa.gov
 - Amber McCullum: AmberJean.Mccullum@nasa.gov
- General ARSET Inquiries
 - Ana Prados: aprados@umbc.edu
- ARSET Website:
 - http://arset.gsfc.nasa.gov/

ARSET

Applied Remote Sensing Training http://arset.gsfc.nasa.gov

Thank You

Next Week:

Deriving NDVI from Landsat